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Abstract

Comer flow, driven by differentialheating at the vertical walls in a rectangularcavity, is studied. The flow is initiated
from a strong vertical stratification of a Boussinesq fluid. The system Rayleigh number is large and the Prandtl
number is 0(1). Previous studies point to a considerable thickening of the boundary layer depth, which is referredto
as the comer jet when the fluid moves vertically in and horizontally out near the corner. Some authors argue that the
phenomenon is caused by an internal hydraulic jump. In some other investigations, the corner jet structure is shown
to arise due to the temperature undershoots in the vertical boundary layer, which stem from the stable thermal
stratification in the core. In this paper, the above controversy is resolved in part and a theoretical model for the corner
flow is given. Furthermore, efforts are made to establish the condition for a smooth turning flow, without abrupt
changes of the flow depth, near the corner.
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1. Introduction

Buoyancy-driven convection in an enclosed
rectangular cavity constitutes a classical subject. The
overall flow and attendant heat transfer under a
variety of wall boundary conditions have been
extensively documented. One benchmark flow layout
is a two-dimensional sidewall-heated rectangular
enclosure. Two different temperatures, e.g., T

h
and

Tc ' /':iT == T; - T, > 0, are specified, respectively, at

the right and left vertical sidewalls. This, in the
gravity field, causes a rising (sinking) flow near the
right (left) vertical sidewall. The global pattern is
characterized by a counter-clockwise circulating flow.
At the two horizontal walls, straightforward thermal
conditions, such as an insulating wall or an isothermal
wall, are often imposed [1-3]. The relevant nondi­
mensional parameters are: the system's Rayleigh
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number, R,,; the Prandtl number, (J', and the aspect

ratio of the cavity, A.
In most technological applications, R,,» 1 , and

boundary layer-type flow prevails. Thus, flows are
concentrated in thin boundary layers adjacent to the
walls, and fluid motions are weak in the interior of the
cavity. Since the main driving force is the buoyancy
generated in the vertical boundary layers, in previous
studies, much attention has been given to the vertical
boundary layer and the interior. The treatment of
the boundary layers on the horizontal walls has
been relegated to a subsidiary level [4, 5].

In the standard side-heated cavity model with large
Ra , (J' - 0(1) and A - 0(1), the thickness of the
vertical boundary layer 0(R;I/4), and the vertical

velocity scale w - 0(1). As mentioned earlier, the
vertical boundary layer exerts active control on the
entire flow field in the cavity [6]. One important
question is the behavior of vertical boundary-layer
flow as it approaches the corner region where the
vertical wall abuts the horizontal wall. The vertically
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Prandtl number a =v / K .

Neglecting the terms of 0(£) , the steady-state

linearized governing equations, in non-dimensional
form, are

directed flow has to negotiate its way in the vicinity

of the comer to tum into a horizontally directed flow.
Descriptions and physical interpretations of the flow
mechanism in the comer region are relatively less
numerous and poorly established [7, 8].

In this article, features of the comer flow will be
examined by means of theoretical analysis. Of
particular interest is the corner flow generated by the
singularity of the wall boundary condition. Know­
ledge of the comer flow will provide an important

link in depicting the complete buoyant flow in the
entire domain of the cavity. The present effort will

also put in perspective some of the earlier arguments
on comer flows.
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In the above, R" denotes the Rayleigh number

R" = agI:1T'L'3/ vK, which is assumed to be very

large, i.e., R;» 1.

The associated boundary conditions are set as
follows. At the top and bottom horizontal walls, the
basic-state isothermal conditions are unperturbed, i.e.,

At right (left) vertical wall, the temperature

perturbation of unit strength is imposed as
T = + 1 (T =; -1) except in the localized corner area
of length O. The boundary condition near the comer
is dealt with by introducing a function of z - comer
zone near the horizontal wall. Wall thermal condition
at the vertical wall near the comer zone is assumed a
function of the z -coordinate:

2, Mathematical formulation

An incompressible viscous Boussinesq fluid [ki­
nematic viscosity v, coefficient of thermal diffu­

sivity K, coefficient of thermometric expansion a]

is contained in a two-dimensional square enclosure
[height 2L", width 2D', L' / D' = 2h - 0(1)]. The

Cartesian coordinates (x,z) , together with the

corresponding velocity components (lI, w) are

shown in Fig. 1.
At the basic state, the fluid is motionless with a pre­

existing linear stable stratification, i.e., the basic
temperature distribution T,.' in the fluid is given as

(I)

T = 0, II = W = 0 at z = ±1. (6a)

in which T/: and T1; denote, respectively, the

temperature at the top and bottom walls.
The physical quantities are made dimensionless as

follows:

In the above equations, I:1T':= T; - T;, superscript *
stands for dimensional quantities, subscript r refers
to the basic state reference conditions, and subscript 0
denotes the values at the origin (x=z=O). The strength
of perturbation is gauged by e , which is assumed to
be small (e:« I), N and a are respectively the
Brunt-Vaisala frequency N = (agl:1T' / L't' and the

lI=w=O,T=±f(z) at x=±1 (6b)

in which fez) =±I at Izl:s 1- 0,
and, in the z- region 1- 0 < [zl :s 1,

the function fez) varies between /(1.::1 =I) =0

and /(lzl=I-0)=I.

In the case of 0 * 0 , the above thermal variation
by fez) could effectively remove a mathematical

singularity due to an abrupt jump-discontinuity at the
corner point when 0 = 0 , i.e., horizontal and vertical

walls meet at different temperatures of ~11f = 0 and

T,w =1 or -I. Herein, 0 is assumed to be very

small positive value: 0 - O(R,~1;6)« 1. Evidently, if

o= 0 , a discontinuity in the wall temperatures at the

T' -T'
T=---'

£I:1T'

P - P;
P= " "

£PogL asr
(lI, w) = (ll', w')a'C / £L'N,
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3.2 Vertical boundary layer flow

It is noted that the temperature field is anti-symmetric
about x = 0 , which stems from the problem
definition. From Eqs. (2) and (5), interior velocities
are

As a result, the leading-order interior variables are
the same as those of basic state, i.e., the interior fluid
is in the state of motionless linearly stable tem­
perature distribution of Eq. (1).

corner, i.e., TI/w = 0 and Tvw = 1or -I, is seen, in

which subscripts HW and VW denote, respectively,

horizontal and vertical wall. The above formulation
with 5 * 0 is set up to handle this mathematical
singularity, and 5 IS assumed to be very

small: 5 - O(R;I/6) « I. The proper size of 5 as

well as the function fez) will be determined in the

subsequent analysis based on the consideration of
smooth-turning condition in the vicinity of the corner.
In passing, it is mentioned that a formulation with
5 *0 leads to a model to effectively describe the

realistic systems.

u, =w, =0. (8)

leading order flow variables are properly scaled as

~

cD = '\' R- n l 4cD n in which cD - u w Tor p . Theh L..... J h' , ,
fI::;;O

Next, consider the vertical boundary layer. By
expanding the vertical boundary layer variables into a
Taylor-series with the expansion-parameter of R,~1/4,

(9)

(10)

T.h + a2w'hI a1]: = 0,

W'h = a2T.bIa17: '

which are subject to the boundary conditions

One obtains the corresponding boundary layer
variables 1]; =R,~/4(1 +(_I)i x), where (j =0,1) refer,

respectively, to the left and right vertical boundary
layer coordinates. Substituting the above relations
into Eqs. (2)-(5), together with the boundary
condition, the leading-order vertical boundary layer
equations are

3. Analysis

For Ru » 1, as sketched in Fig. I, the flow field

can be divided into the inviscid interior (I), buoyancy
layer near the vertical wall (II), horizontal boundary
layer on the horizontal wall (III) and the corner
regions where the horizontal and vertical boundary
layers meet (IV). To secure the solution, a flow
variable cD is written as cD = cD, + cD"h + cD"h + cDc ,

and the boundary layer matching technique will be
deployed, where subscripts i, vb, hb, c refer,

respectively, to the above-referenced regions I, Il, III
and IV [9].

Let's consider the interior solution by neglecting
the viscous diffusion terms in Eqs. (3)-(5). From Eq.
(3), the pressure is a function of z only; thus, the
temperature field also becomes a function of z only
[see Eq. (4)]. Therefore, the interior temperature
should be

3.1 Interiorflow

T, =0 . (7)
T.h = (_ly·1, W"h =0 at 1]i =0, (j =0,1), (1Ia)

(II b)as '1i ---+ CJJ •

The boundary layer solutions are

i; = (_I)i+1 exp(-17J,fi)cos(1];I.,fi), (l2a)

W'b = (_1/+ 1 exp(-17i 1.,fi)sin(1]i l.,fi). (l2b)

Since the problem is symmetric about the mid­
height, only the boundary layer flow near the top

and T"h = W'h = 0

3.3 Horizontal boundary layerflow

x

V)

4Z
V

(III) ""I- (I

t
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(I)
: I y(II

--. ~

Fig. l. Configuration of the flow field.
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horizontal wall (z = 1.0) is treated. For the top

horizontal layer, introducing the stretched vertical
coordinate (= (1- Z)R~!6 , and using the expansion

parameter R~I!12, the meaningful scaling of

horizontal layer variables is given:

equation for gk(() :

(21)

in which ..1.k = ((2k + I)Jr12)11) , and the boundary
conditions are

Uhb = R:1/12~b' W hh =R!~1J4Whb'

r; =R;1f12T"h, Pith =R;1I4Phh.

gk(0) = 0, gIl (0) = (-V4A(0)/(2k + I)Jr,

g,4l(0)=(- rf 2AJi(0) . (22)

Placing the above scaled variables into the
governing Eqs. (2)-(5) yields

BUhh _ BWhh = 0
ax B( ,

_ OPhb + B"~'b = 0
Bx B(" '

OPhh + f. = 0
B( hb ,

_ B2T
hb

Whb =--, ,
B(-

with the associated boundary conditions,

at (= 0, uhb = whh = Thb = 0,

at x=±I, ~'b =-lIji·df(()ld(,

(13)

(14)

( 15)

(16)

(17a)

(17b)

(17c)

To solve the above Eq. (21), without loss
of generality, it may be assumed that
f(() = (1- exp(-a(» where a - (I) . Then, the

solution for gk can be obtained in a straightforward

manner but the results are omitted here.

3.4 Corner flow

For the left and right extension regions (Iv) of size
( R,~1/4 x R: 1/6) near the top wall, the stretched

coordinates are TJj =R~!4(1 + (-l)j x), (j =0, I

denote, respectively, the left and right comer), and
(= R,~/6(1- z) . The meaningful scales for comer

variables are

Substituting the above variables into Eqs. (2)-(5)

yields

(23)

(24)

(25)

(26a)

(26b)

(26c)

---+ 0 . (26d)

Uhb(X -H_I)}·I ,() + u,(TJ
j

---+ O,() = 0,

w,(TJ j ---+ O,() = 0,

T".(TJj ---+O,()=(-I)'(l- f((»,

together with the boundary conditions

The solutions to the above are found from Eqs. (24)
and (25):

( 18)

U
hh

= A(() - f 2 g~)(()cos (2k + I) lZX, (19)
r-n (2k + I)Jr 2

T,'b = -A1")(()x

+iJ 2 )2 gi4)(()sin (2k + I) JrX , (20)
k~O l (2k + I)Jr 2

The boundary condition (17b), related to the fluid
transport from the left-wall vertical boundary layer to
the right-wall boundary layer, is obtained from the
comer zone analysis in the next section.

For the solutions of Eqs. (13)-(16), in view of
anti-symmetric character of whh and Eq. (17b) for

Uhh , one has

in which A(() = __1_ df(() .
J2 d(

Substituting Eqs. (18)-(19) into Eqs. (13)-( 16) and
after some mathematical manipulations, one has the
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7;.. = (-I)j (1- I(,;))exp(-'7j / J2)cos('7j / J2), (27)

W, = (-I)j (1- f«())exp( -'7j / J2)sin('7j / J2) , (28)

and by integrating Eq. (23),

u. = _I dl(,;) exp(-.!lL)(sin(.!lL) + cos(.!lL)J., J2 d( J2 J2 J2
(29)

Combining Eqs. (26a) and (29), the compatibility
condition for mass transport between the horizontal

layer and the (R,~1/4 x R: 1!6 ) comer region is secured

(30)

Equation (30) was already utilized to a boundary
condition at x = ±I to solve the horizontal layer flow

[see Eq.(I2b)].

4. Result and discussion

Exemplary plots of analytic solution obtained in the
previous section are shown in Figs. 2(A)-(C), for

i
I
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r

z
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z

(a) (lJ) IC)

Fig. 2(A). Plots of the streamlines at R" =107 and a =0.5. "[,,, =I-exp[-a(l-;:;)R,~'O]

(a) Global streamlines in the 1/4 region, (b) Wall temperature, "[,,, along the vertical wall, (c) Local streamlines neat the corner.
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Fig. 2(B). The same as Fig. 2(a) except a = 1.0.
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Fig. 2(e). The same as fig. 2(A) except a = 2.0.
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which the thermal boundary conditions are defined as,
at the horizontal walls, TIIIV = 0 and at the vertical

walls,

where j =O(te/t wall) and j =1(right wall) . The
system Rayleigh number is fixed as Ru = [07

• For
each of the cases of Fig. 2, column (A) denotes a plot
of streamlines in the first quadrant of global flow­
field region and column (C) is a local magnification
plot near the comer. Column (b) denotes a wall
temperature condition corresponding to each case
along the vertical wall for the cases of each column
(A) & (C) in Figs. 2(A)-(C).

Figs. 2(A)-(C) show that as the value of a

increases, the thickness of horizontal boundary layer,
A. , decreases while the flow tums around the comer

region (R,~"-1 x R,~1!6), i.e., region IV in Fig. 1. Those

are clearly seen also in Fig. 3.
Taking look at flow physics in region IV, the fluid

gradually changes its direction from vertically upward
incoming-direction to horizontally leftward departing­
direction by the action of buoyancy force imposed by
the temperature difference between unperturbed basic
interior temperature, T, and vertical wall temperature,

T,w at the same z - location, i.e., 6.T = T,w - T, .

Meanwhile, it is noted that a constant, a , plays a
role as a scale factor on z - variation of function
T,w when the vertical wall temperature matches the
horizontal wall temperature [see Eq. (31)]. The larger
a -value renders the shorter z - varying length scale
of vertical wall temperature, T" [see Eq. (31)]. Up­
rising fluid along the vertical layer is set in motion
with a constant velocity in region II, which is induced
by the buoyancy force owing to 6.T = 1.0 . The up-

rising fluid, however, begins to decelerate in the
region IV; i.e., 11- zl- O(a-1R;1/6) where 6.T < 1.0

[see Fig. I & Eq. (31)]. A critical location Ze' which
is a beginning point of deceleration of the fluid
upward motion, may be specified as Zc '" 1- a-IR,~1'6 .

Thus, the above defmed variable Zc has a meaning
of distance for up-rising fluid to undergo a certain
deceleration while the fluid is traveling along the
vertical boundary layer.

In the limit of a ~ 00, the beginning point of
deceleration approaches Zc ~ 1.0 , which means,
from the point of scale analysis, the uprising fluid
doesn't tum around in the (R,~'/-I x R,~1/6) comer
region but it must go around the comer through the
( R;'/-1 x R:'/-I) corner region, i.e., a hatched tiny
region in Fig. 1. The width of fluid passage is
O(R,~".j) in the zone just after the turning, but it is
noted that the width of the horizontal layer away from
the corner should be O(R,~1/6) in region 1II in Fig. I.
As a result, in the case when there is a jump
discontinuity in wall temperature at the corner
without a matching zone, i.e., T(x =±1,z) =1.0 ,
the resultant flow shows a jet-like pattern due to a
sudden expansion of flow area after turning to
approach the horizontal layer of thickness of
O(R,~1/6) [see Fig. I].

However, if the vertical wall-temperature changes
gradually into the horizontal wall temperature along
the vertical wall over a length of 11- =1- O(R,~16)

near the corner, it could provide, over a relatively
long distance, a wall temperature-matching zone
[region IV in Fig.l] for adaptively smooth turning by
buoyancy force reducing, which, in tum, makes a
retardation of fluid vertical velocity. This allows a
smooth turning in the region (R,~'/.j x R,~1!6 ).

Fig. 4 shows a schematic plot on the above
argument.

,5

ai j _ ---'_ -

JJ
x

zJ~-If-----------­
"I
O!I~

5,

o ,is I] J

x

I) ':\5

Fig. 3 Comparison of the streamline patterns. R" = [0' (a) a =0.5; (b) a =1.0; (c) a = 2.0.
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I~....

I"
1i,_O(R;li4)

Fig. 4. Schematics of flow pattern. The length scales of z - variation of vertical wall temperature, I;w , are: (a), O( R:'/ 6
);

(b), O(R;lI4).

5. Concluding remarks

In the previous analysis, an analytic solution was

obtained by the boundary layer matching method.

The solution shows that, if the thermal condition at
the vertical wall varies gradually over the length scale

of 11- zl- O(R,~!;6) near the comer to match the

temperatures between horizontal and vertical walls,

the comer flow turns smoothly around. In that case,

the fluid is moving upward from buoyancy layer at
the right vertical wall, turning in the (R.~!/4 x R,~1!6 )

comer region and being ejected horizontally out along

the horizontal boundary layer near the top wall [see

Fig. I].

However, in the case when there is a jump

discontinuity in wall temperature at the corner

without a matching zone, i.e., T(x = ±I,z) = 1.0 over

-I s z s I , the flow can no longer make a smooth

turning. The rising flow along the right vertical wall
cannot tum around in the region of (R,~1!4 X R,;1/6 ). A

smooth turning can be made in the region of
( R,~1!4 x R,~1i4). This is based on the compatibility

condition [Eq.(30)]. The resultant flow shows a jet­

like pattern due to a sudden expansion of flow area

after turning to approach the horizontal layer of
thickness of O(R,~!/6) [see Fig. 1].

Physically speaking, consider the wall-temperature

decreasing along the vertical wall in the

region, 11- zl- O(R;!!6) , near the corner. This

weakens the vertical buoyancy force which, in turn,

makes a retardation of fluid vertical velocity. This

allows a smooth turning. On the other hand, ifthere is

no wall temperature-matching zone, the flow lacks a

decelerating mechanism in the vertical boundary layer
of (R;I!4 x R;1I6) region. The fluid goes up to the

region (R,~!!4 x R,~1/4) without any turning motion

while passing the region (R;!!4 x R;1I6). The width of

fluid passage is O(R;!/4) in the zone just after the

turning, but it is O(R;!!6) in the horizontal layer

away from the comer. Thus, a comer-jet like motion

occurs, which is brought forth from the singularity of

thermal wall boundary condition at the comer point.
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